Source code for spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence.timing_dependence_vogels_2011

# Copyright (c) 2017-2019 The University of Manchester
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <>.

from spinn_utilities.overrides import overrides
from data_specification.enums import DataType
from spinn_front_end_common.utilities.constants import (
from spinn_front_end_common.utilities.globals_variables import (
from spynnaker.pyNN.models.neuron.plasticity.stdp.timing_dependence import (
from spynnaker.pyNN.models.neuron.plasticity.stdp.synapse_structure import (
from spynnaker.pyNN.models.neuron.plasticity.stdp.common import (
    float_to_fixed, get_exp_lut_array)

[docs]class TimingDependenceVogels2011(AbstractTimingDependence): """ A timing dependence STDP rule due to Vogels (2011). """ __slots__ = [ "__alpha", "__synapse_structure", "__tau", "__tau_data", "__a_plus", "__a_minus"] __PARAM_NAMES = ('alpha', 'tau') default_parameters = {'tau': 20.0} def __init__(self, alpha, tau=default_parameters['tau'], A_plus=0.01, A_minus=0.01): r""" :param float alpha: :math:`\alpha` :param float tau: :math:`\tau` :param float A_plus: :math:`A^+` :param float A_minus: :math:`A^-` """ self.__alpha = alpha self.__tau = tau self.__a_plus = A_plus self.__a_minus = A_minus self.__synapse_structure = SynapseStructureWeightOnly() self.__tau_data = get_exp_lut_array( machine_time_step_ms(), self.__tau) @property def alpha(self): r""" :math:`\alpha` :rtype: float """ return self.__alpha @property def tau(self): r""" :math:`\tau` :rtype: float """ return self.__tau @property def A_plus(self): r""" :math:`A^+` :rtype: float """ return self.__a_plus @A_plus.setter def A_plus(self, new_value): self.__a_plus = new_value @property def A_minus(self): r""" :math:`A^-` :rtype: float """ return self.__a_minus @A_minus.setter def A_minus(self, new_value): self.__a_minus = new_value
[docs] @overrides(AbstractTimingDependence.is_same_as) def is_same_as(self, timing_dependence): # pylint: disable=protected-access if timing_dependence is None or not isinstance( timing_dependence, TimingDependenceVogels2011): return False return (self.__tau == timing_dependence.tau and self.__alpha == timing_dependence.alpha)
@property def vertex_executable_suffix(self): """ The suffix to be appended to the vertex executable for this rule :rtype: str """ return "vogels_2011" @property def pre_trace_n_bytes(self): """ The number of bytes used by the pre-trace of the rule per neuron :rtype: int """ # Trace entries consist of a single 16-bit number return BYTES_PER_SHORT
[docs] @overrides(AbstractTimingDependence.get_parameters_sdram_usage_in_bytes) def get_parameters_sdram_usage_in_bytes(self): return BYTES_PER_WORD + BYTES_PER_WORD * len(self.__tau_data)
@property def n_weight_terms(self): """ The number of weight terms expected by this timing rule :rtype: int """ return 1
[docs] @overrides(AbstractTimingDependence.write_parameters) def write_parameters(self, spec, weight_scales): # Write alpha to spec fixed_point_alpha = float_to_fixed(self.__alpha) spec.write_value(data=fixed_point_alpha, data_type=DataType.INT32) # Write lookup table spec.write_array(self.__tau_data)
@property def synaptic_structure(self): """ Get the synaptic structure of the plastic part of the rows :rtype: AbstractSynapseStructure """ return self.__synapse_structure
[docs] @overrides(AbstractTimingDependence.get_parameter_names) def get_parameter_names(self): return self.__PARAM_NAMES